![]() |
Rassal değişken - Rassal değişken nedir? Rassal değişken Hakkında
Rassal değişken - Rassal değişken nedir? Rassal değişken Hakkında
Vikipedi, özgür ansiklopedi Git ve: kullan, ara Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistikin temeli kurulmuştur. Son birkaç yüzyılda olasılıkla ilgili matematiksel fikirler geliştirilirken rassal değişkenlerlerle ilişkili teori ve kullanım matematik kuramı biçimlerine konulmuştur. Rassal değişkenleri modern matematik görüşle tam olarak anlamak için, daha yakın zamanlarda matematikçiler tarafından geliştirilmiş olan ölçüm kuramı hakkında geniş bilginin kazanılması gerekmektedir. Rassal değişken kavramı, bu kuram içinde tüm özellikleri ile arka planda kalmakla beraber, kuramın içeriğinde önemli bir yeri bulunmaktadır. Bununla beraber, rassal değişkenler kavramının matematiksel teoride değişik ileri seviyelerde fazla teori gerektirmeyen çok daha az ileri matematiksel bilgisi ile de anlaşılması mümkündür. Böylece rassal değişkenler hakkında temel bilgileri anlamak için sadece set kuramı ve değişkenler hesabı bilinmesi yeterli olmaktadır. Geniş bir tanımlama ile, bir rassal değişken, değerleri rassal olan ve bu değerler için bir olasılık dağılımı saptamak imkânı olan bir sayıdır. Daha matematiksel biçimde, bir rassal değişken bir örneklem uzayından dağişkenin mümkün değerlerinden oluşan ölçülebilir uzaya değişimi gösterir. Rassal değiskenlerin bu formel tanımlanması reel değerli sonuçlar veren deneyleri çok sıkı bir surette matematiksel [[ölçüm {matematik)|ölçüm kuramı]] çerçevesi içine sokmakta ve reel değerli rassal değişkenler için dağılım fonksiyonu kurulmasına imkân sağlamaktadır. |
Rassal değişkenlerin fonksiyonları
Eğer X rassal değişkeni Ω üzerinde bulunursa ve f ölçülebilir fonksiyon R → R ise, bu halde de Y = f(X) de Ω, üzerinde bir rassal değişken olacaktır. Buna neden ölçüculebilir bir fonksiyonun kompozisyonu da ölçüulebilir olmalıdır. Bizi bir olasılık uzayi olan (Ω, P) den (R, dFX)ye gitmemize izin veren yordam Y için dağılımı bulmak için de kullaniılabilir. Y için yığmalı dağılım fonksiyonu ![]() Örnek 1 X reel değerli bir sürekli rassal değişken olsun ve Y = X2 olsun. O halde, ![]() P(X2 ≤ y) = 0, ve bu nedenle ![]() ![]() ![]() Örnek 2 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Vikipedi, özgür ansiklopedi |
Saat: 16:58 |
lisanslı Powered by vBulletin®
Copyright ©2000-2026, Jelsoft Enterprises Ltd.
SonForum.org 2007-2025